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The problem of steady plane flow of a perfect ponderable fluid bounded by solid
polygonal sections and two free sutfaces of finite length is considered in the ex-
act nonlinear formulation, It is shown that the problem is solvable for sufficien-
tly high Froude numbers, The solvability of a particular problem of this kind
was proved earlier in [1] on certain simplifying assumptions, while solvability
of the problem of flow of a ponderable fluid with a single free surface was inves=
tigated in [2 — 5],

1, The steady potential flow of an incompressible ponderable fluid whose boundaries
consist of solid polygonal sections and free surfaces AB and D of finite length is con~
sidered in the plane z = x - iy . Isolated hydrodynamic singularities may be present
in the flow, One of the possible patterns of fluid motion is shown in Fig, 1,

Let in the plane of the auxiliary variable { = E 4 in the rectangle with vertices
0, n/2 n/2+4 av/2 and st /2 (v = ifr|) be the conformal image of the
flow region with its free surfaces represented by the horizontal sides of that rectangle
(Fig.2). We denote the inner region of the rectangle by D),

The derivative of the complex potential dw / d{ in the [ -plane is readily construc-
ted at zeros and poles [6] (their number and multiplicity are determined by the flow
pattern and their position in the closed region I is assumed to be known), Function
dw / d§ is elliptic of periods 7t and nv , and is of the form
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where @, is a constant whose dimension is that of the velocity potential, §, ({) and
0,(%) are theta functions, d,,, ¢, and x, are integers, and [, is the image of an infi
nitely distant point of plane z, provided it exists and lies in D,
let us introduce in the analysis the Joukowski function
2@ =In(Vo Ll =r i, r=ln D (1.2)
Oll'w i 3 = 1l T .

where V is the absolute velocity, V is its value at point 4, and 0 is the angle of
inclination of velocity to the z-axis,
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Assuming that images of the polygon vertices are specified in the [ -plane and that
the angles of inclination of polygon sections and the position and the kind of singular

7
7 ar/Z FA
z/E
.4 A ¢
Fig. 1 Fig, 2

points of function % (L) are known, we construct the piecewise constant functions a (1)
db . ,
nd b ) a(n) = 0 (i), b(n) = O(x / 2 -+ in) 1.9

We ascribe to function () the values it assumes while continuously changing with
the motion of point { along the contour DBAC and bypassing singular points along
arcs of infinitely small circles, In accordance with the accepted rule for the scheme
represented in Fig,1, we have: along DE § = Q, along EF 0 = m, along FG 6 =
3n /2 along GHand HK 06 = 2 and so on,

Let us represent %({) in the form of the sum

XE) = %(8) + 7*(5) 1.4

where Yo(C) is the Joukowski function in the case of a weightless fluid flow according
to the considered pattern, and f*({) is a function which is analytic in D and continu-
ous in [J. Boundary conditions for Xo({) are of the form

Reye(§) =0 O<E<n/2) (1.5)
Imy (i) = a(m) O << xnfrl/2)

Imyg (/24 i) =bmn O ak]/2
Reyo(mt /2 4+ 8 =nrn 0<CEL /2

where r, is a constant which remains to be determined,

We denote the points of discontinuity of functions a (n) and b (n) by a; and f§; ,
respectively, It is readily seen that the derivative dy, / d{ at points { = io;, 70/2+
if;, and & (k =~ 0) has first order poles with residues expressed, respectively, by

8;=1la(a;+0)—ala;—0Oat, v,=[b(p, —0) — b (B, + O x?

and — ¥g. The derivative dy, / d{ has no other singularities in D .

Taking into consideration that along the sides of rectangle ABDC Re (dy, /dt)=
0 and using the principle of symmetry, we extend dy, / di over the whole {-plane,
As the result we obtain an elliptic function of periods m and nt , which we represent
in the form of a linear combination of logarithmic derivatives of theta functions (see
[7] p. 350). Subsequent integration yields for ¥o({)
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Real constants 4 and B are determined by the conditions
Imygo (0) = a (0), Tmy,(m/2) = b(0)
which reduce to the form
— a8+ B =a(0) a.m
i

k520

8 v — 21 D) i -k - 4 B = b(0)
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It can be readily ascertained that, when conditions (1, 7) are satisfied, function §q({)
defined by formula (1,6) has in D the required singularities and satisfies boundary con-
ditions (1. 5), and

k0 }
A 9% 0. - ‘ .
rye=— 2 0 — }‘.Z Bw, 1A Z %, Im g, — — An ]
i { e
2. With the y-axis directed vertically upward it is possible to reduce by differenti~
ation the conditions of pressure constancy at each free surface to the form

dr ¢ d9

~37r e LD Y
T VI

ain ) 2.1)

where g is the acceleration of gravity and ¢ is the velocity potential,
Taking into account equalities (1,1) - (1, 5) and (2.1), we obtain for function f* ({)
the following boundary value problem:

exp (—3h%) dh* /dE = vpyu sin (T 4 we®) (k= 0,1; 0 CEL (2.2)

)/ 2)
Ref¥* (n/2) =0 2.3)
Imf* (i) — Imf* (m/2 -+ i) =0 (0<n<mhp|/2) 2.4)
where
v =g ol / VP
Ty = Imy, (knv /2 -+ §), pp = e 3TF (knv /2 4+ §)  (2.5)
A = Ref* (knt /2 -+ &), w* = Im f* (knt /2 + )
Denoting

3Ref* (nv /2 4+ n/ 2) = p* (2.6)
from conditions (2, 2) and (2. 3) we obtain

dh¥ [ dE = vpi exp (kg *) sin (T -+ py*) X 2.7
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/2

[1 + 37 exp (kuay*) S 0 sin (T -+ pie®) d§]—l (k=0.1)

iet h(§), ho (%) and h, (&) be real functions continuous along segment [0, n / 2].
We introduce operator K

k] / 2 m/2
i B (L —1 iy Y ()
K (ho, by) = — S By (t) 1umdt— — 3 hy () 1n mdt (2. 8)
0 0
It can be readily ascertained that function
F(8) = K (hg, hy) (2.9)

is regular in D, continuous in [ and satisfies conditions

Imf(m)—Imf(n;/2+m)—-0 O t]/2) (2.10)

Rt (S E) = k@ (k=04 0<3< )
Ref(n/2) =0
Introducing notation
hp = Ref(knt /2 4+ ), wyp = Imf (kat/2 4 E) (2.11)

M =dhy /dE(k =0,1), po=3Ref(nt/2 -+ n/2)

and operators

w2

. 0(E—-0 7
Dy(h) = 5= Sh(t)ln[m] dt
0
1 01 (%
Di(h) = 2—5 D[]
0
w2

6
D, (k) = — 5 £) tat

from (2. 8) and (2. 9) we obtain relationships
o =Dy () — Dy (M), = Dy (W) — Dy (M) (2.12)
Mo = Dy (M) — Dy (Ao)
Let d be a real number, We introduce operators P, and Py
Py (h, d) = vozexp (kd)sin (T 4+ h) X
n/2 4
[t +3vexp(ed) § pusin(T, +R)ds| =01
2
Allowing for (2, 7) for the determination of functions pg*, p,* ,and constant p,*
fiom (2.12) we obtain the following system of operator equations:

Bo = Dy (Py (o, 1a)) — Dy (Py (g, Wa)) (2.13)
Hy = Dy (Py (o 12)) — Do (P (11, Mo))
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Ho = Dy (Py (B, o)) — Dy (P (1g, o))

Let C' be the space of functions continuous in the interval [0, m / 2] and E the space
of real numbers, Introducing the Banach space

=C X CXE={v=_(up U M) P MEC, po = E}

with norm

Ivlis = lwolle + Hulle + llpalle

and operator A defined over B by the equalities

Av)=A4,(v) X 4, (v) X 4, (\’)

Ay (v) = Do (P (1o, 12)) — Dy (P (py)) (2.14)
1 (V) = Dy (P (o W) — Do (Pr (g, o))

Ay (v) = Dy (P (Mg, Ma)) — Dy (Py (Mo, Me))

we represent system (2,13) in the form of the operator equation
v =4 (v) (2.15)

8, Let us investigate the properties of the introduced operators,

Lemma, Operators D, and D, transform space C into itself,

let h(E) &= C and 14 (§) = D, (h (§)). Let us consider the remainder 7, (§) —
T4 (). Using the expansion of function @, () into an infinite product (see [7] p. 344),
the equalities [8]

111(1 —_ qznegii) — E % qznkezikE (q — einr)
k=1
sin(§—1)] N 1 . .
MNmETH | T 2 ’gl—k——sm 2kE sin 2kt

the Cauchy~Buniakowski inequality, and the Parceval equality, we obtain

[ T0® — 0 @) | <21kl D X e |sin 268 — sin 20 B (2.1)
n=0 k=1
Since the series in the right=hand side of expression (3, 1) is uniformly convergent and
for §-> £’ tends to zero, hence 7, (£} & (. The validity of this lemma with respect
to operator [, is proved in a similar manner, The norms of operators 2, and D, are
determined as in [1, 9] by

. 2 24% \TL 2k — )N
” DOI!C:dO:T{ + E E( lq 7 ) (2k—1)(2k-«1)!!} (3.2)

n-=1 k=1
9 - "f‘ pgml |21 2k — 211
| D1l = dy = —ﬂ“gmv (1+q4n a) 2k — 1) (2k — 1)1

where (G is the Catalan constant, Derivation of the norm of operator D, is elementary

iDylle = 3n /4 (3.3)

According to(1,1) and (1.6) p, and 'y, = C (k = 0, 1) (note that when the free
surfaces contain infinitely distant points, the form of function dW / d{ is different from
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(1,1) and p, €& ().
If ppand p, = C, and Py & 10, ra), then for

T<<ole™ o= 3n llgla:]xl llexlle (3.4)

the relationshi
® P, (e, Mo) & C (k = 0,1) (3.5)
HPw (fn, po)lle << Toe™ (1 — vee™)™ (3n)7!
142 ())& < /2 rwers (1 — o)
are valid, For
T<< 27‘2 [") (1 + 2"2)67’]~1 (3-6)
condition (3. 4) is satisfied, and (3. 5) yields the estimate || 4, (v){|g <C ry. This, with
the lemma taken into account, implies that operator A transforms the closed set B, =
C x C x 10, ry] (B, C B) into itself,
Let v/ = (o', W', ') 5 By, V' = (o', W', Wa") & By, and 7 satisfies con-
dition (8,4), Then, after some transformations, for k = 0,1 we obtain

1Pe (Wi's wa") — Py (", wa)lce < yoenlk p’ — po"lle + (3.7
(1 -+ 2v0em) Iy — pllc] (1 — yoe™ (3n)

Allowing for (8,2),(3.3) and (3, 7), from (2,14) we obtain

A () —A0) s =114y (v) — Ag (") flc + |4, (v') —
AL () lle + 14 () — A, () e e | v — v ||

o =a(r) = yoe* (1 4+ 2rowe™) (1 — )2 b1

b=3n(3n/4+d, > d)t

It can be readily shown that q < 1, when

1< poler, b = (2b+1 — V1 120) (26 — 47 (3. 8)
Since B << 1, hence for
T << @(rg) = 2fry lo (1 + 2ry)em ™

the irequalities (3.4),(3.6) and (3, B) are simultaneously satisfied, and operator A
satisfies the conditions of applicability of the method of contractive mappings,

The curve ¥ = @ {ry) (0 <{ 7, <C o0) shown in Fig. 3 passes through the coordinate
origin and asymptotically tends to the axis of abscissas when 7y ~ oo, For ry = 1/,
function ¢ (r,) reaches its single maximum
@ (Uy) = (/) e’ =7, Every
straight line ¥ = 1, <{ 7, intersects curve
T = @ (ry) at two points with abscissas
rg == 1y (1)) and 17y = " (17) (rd' <
'1/2 < r2”)-

We use the method of contractive mappings
for formulating the following theorem,

Fig. 3 Theorem 1, Solution v¥ = (ug*, w,*,
1o*) of Eq.(2,15) exists in space By’ = (¢ x
C X 10, ry'l when 1 < Y1 << ¥, - Inspace By = C x € XI0, "] (By' CC By

7

/o
Fg)

N
>
S
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“
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this solution is unique, It can be found by the method of successive approximations with
the use of the following scheme

v = A (vin-1)) (n=1, 2(.) (3.9

and any initial approximation v(® = B,’. Estimate of the nth order approximation
error is given by formula

R R “7m [v® — 4 (vO)]g, ay =0a(r}), vO B} (3.10)

4, If v* = (mo*, ™, Me*) is a solution of Eq. (2,15), which belongs to space B,
then it can be readily shown that function

() = K (Po (po*, pa®), Py (Wa*, pa¥)) (4.1)

is a solution of the boundary value problem (2.2)— {2.4). The converse statement that,
if function f* ({) solves the boundary value problem (2,2)— (2.4) and wo¥*, p,* and
pp* are determined by equalities (2, 5) and (2,6), then v* = (Ro*, ¥, po*) isa
solution of Eq, (2,15) and v¥ & B is also valid, Hence the boundary value problem
(2. 2) — (2. 4) has no solutions different from those derived by solving Bq. (2.15) by for-
mula {4.1).

tet v = (uiV PV pP Py (n = 1,2, ..)). We introduce the notation

FE) = K (Po @y, p™), Py, n™™) (4.2)
AM = Re ™ (knr /2 + ), MV =dMP/dE (B=0,1)
Taking into account (2, 9) ~ (2,12) which define the properties of operator K, we obtain
Re f(n) (3/2) =0, ;“’(n) P, (p(n—-l), “(zmn) (k =0,1) (4.3)
Tm f™ (8) = Do (Po (", :%"“"))——- Dy (Py (1", ™)
T 0 (5 4+ ) = Dy (P (™™, 0 — Do(Pae™, 1)
3Re f (5 + ) = Da(Pr (", W) — Dy (Pa (7™, ™)
From this with allowance for (3, 9) and (2,14) we obtain
Imf™ (knt /2 + &) = p’ (k= 0,1)
3Re f™ (nv /2 + 7/ 2) = p{¥
1t is not difficult to verify that

max = D|f*(0) — f™ (1) | << (4.4)
max k= 0, 1 (|Ae* — A7 e 4 [ie* — 1 )
where k = 0,1 and
" n d?\,,‘*
§?%;: A’A !C\ g@% bl AP g -+ —E‘g a8
Using formulas (2. 7), (4. 3, (3.2),(3. 3) and (3, 7), from (4. 4) and {4, 5) for vy & B,
and ¥ <7; <7, we obtain
max § & D | f* () — f™(E) | < oy v — v-U g

e (4.5)
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which with allowance for (3,10) yields
n
max{ e D |f* () — [V ()| < =5 1O — A0 s (4.6)

Let us denote by M (r,) that class of functions f ({) which are analytic in D, con-
tinuows in D ..nd such that i
v

3Ref(ig—+~g—)<,r2, -(%,:Ref (T+§)EC (k=0,1)

On the basis of these results we can formulate the following fundamental theorem ,

Theorem 2. Solution of the boundary value problem (2,2) - (2. 4) for ¥ << 1; <<
T, exists in the class M (ry'), and in the class M (ry") it is unique, The solution can
be derived by the method of successive approximations with the use of formulas (4, 2)
and (3, 9) for any v & B,’. Estimate of the nth approximation error is given by for-
mula (4, 6).

with f* () known, any ge€ometric and kinematic properties of the flow can be de-
termined by formulas (1.1),(1.2),(1.4) and (1.6). The Bernoulli equation provides its
dynamic properties,
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