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The problem of steady plane flow of a perfect ponderable fluid bounded by solid 

polygonal sections and two free sutfaces of finite length is considered in the ex- 

act nonlinear formulation. It is shown that the problem is solvable for sufficien- 
tly high Froude numbers. The solvability of a particular problem of this kind 

was proved earlier in [l] on certain simpering assumptions, while solvabi~ty 

of the problem of flow of a ponderable fluid with a single free surface was inves- 
tigated in p - 53. 

1. The steady potential flow of an incompressible ponderable fluid whose boundaries 
consist of solid polygonal sections and free surfaces AB and CD of finite length is con- 
sidered in the plane z = x + iy . Isolated hydrodynamic singularities may be present 
in the flow. One of the possible patterns of fluid motion is shown in Fig, 1. 

Let in the plane of the auxiliary variable 5 = E + iv the rectangle with vertices 

0, ~~12, ~d!2+nt7/2 and n-c/2 (z = ijrl) betheconformalimageofthe 
flow region with its free surfaces represented by the horizontal sides of that rectangle 

(Fig. 2). We denote the inner region of the rectangle by D. 
The derivative of the complex potential &.J / dc in the P-plane is readily construc- 

ted at zeros and poles 161 (their number and multiplicity are determined by the flow 

pattern and their position in the closed region B is assumed to be known). Function 

dw J d; is elliptic of periods x and nr , and is of the form 

(1.1) 

r]l [;)I (5 - j,) ()I(; + IJi) O1 (j - 5,) O1 (j + L)lx’ 

(2 d: 2 dtn + -jJ c, -j- 2 2 Xii -.= 0, a,, b, E (0, fi I -c 1 I 3, St&3 
nz * h‘ 

where cp,, is a constant whose dimension is that of the velocity potential, 0, (j) and 
Q,(G) are theta functions, d,, c, and xk are integers, and 5s is the image of an infi- 
nitely distant point of plane z, provided it exists and lies in D. 

Let US introduce in the analysis the Joukowski function 

(1.2) 

where ‘1/T is the absolute velocity, V, is its value at point A, and 0 is the angle of 
inclination of velocity to the x-axis. 
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Assuming that images of the polygon vertices are specified in the c-plane and that 
the angles of inclination of polygon sections and the position and the kind of singular 

H K 

Fig. 1 

points of function ‘X (5) are known, we construct thepiecewise constant functions u (;1) 

and b (II) 
a (r) = 8 (ir), b(T) = O(n / 2 + iv> (1.3) 

We ascribe to function O(c) the values it assumes while continuously changing with 
the motion of point .$ along the contour .DBAC and bypassing singular points along 
arcs of infinitely small circles. In accordance with the accepted rule for the scheme 

represented in Fig. 1, we have : along f)E 8 = 0, along EF 8 = s-c, along fiG 8 = 
3 n / 2, along GH and &K 8 = 2n and so on. 

Let us represent x(C) in the form of the sum 

x(5) = x0(5) + f”(5) CL 4) 

where ~*(~) is the Jo~owski function in the case of a weightless fluid flow according 
to the considered pattern, and f*(c) is a function which is analytic in D and continu- 

ous in B. Boundary conditions for X0(c) are of the form 

where r, is a constant which remains to be determined. 
We denote the points of discontinuity of functions a (Q and b (q) by aj and fir , 

respectively, It is readily seen that the derivative d& / dc at points 5 = iaj, n/2 i- 

$Jit and ck (k .=#= 0) has first order poles with residues expressed,respectively, by 

81 I=I [U (Ctj+O)- n(aj--O)]nwl, v1 = lb (fil - 0) - 0 (PI + 0)l nbp 

and - xc. The derivative dx,, / d< has no other singularities in B . 
Taking into consideration that along the sides of rectangle /lBDC RC (CiXo / @)= 

0 and using the principle of symmetry, we extend dXo / d5 over the whole c-plane. 

As the result we obtain an elliptic function of periods n and nr , which we represent 
in the form of a linear combination of logarithmic derivatives of theta functions (see 

p] p. 350). Subsequent integration yields for X0( 5) 
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Real constants 21 and B are determined by the conditions 

ImXo (0) = n (0), Tm x0 (n / 2) =.- b (0) 

which reduce to the form 

- n 2 sj + B f= a (0) (1.7) 

It can be readily ascertained that, when conditions (1.7) are satisfied, function x,,(c) 

defined by formula (1.6) has in B the required singularities and satisfies boundary con- 

ditions (1.5), and B-#U 
* 1 

r1 z - 2 & rr,,& -- 2 =j; $;V, :. .$ 2 x,; In1 ;,; - -+ An ] 7 ] 
/ I :i 

2. With the ?/-axis directed vertically upward it is possible to reduce by differenti- 

ation the conditions of pressure constancy at each free surface to the form 

where 6 is the acceleration of gravity and tp is the velocity potential. 

Taking into account equalities (1.1) - (1.5) and (2.1). we obtain for function f* ($) 
the following boundary value problem : 

cs j, ( -3?v*,i) dh,,” ,‘d5 = yr, & sin (Ij’,* -,- Ilk*) (k =- o,i; 0 << 5.q (2.2) 

n]7] i 2) 

Ref” (n ! 2) = 0 (2.3) 

Iinf” (irk) :-- ImJ* (n / 2 + ill) 5 0 (0 < %-j <z 12 1 / 2) (3.4) 

where 
7, - g- ]CP,] / ‘Ii2 

T k =: Im xU (Iznr i 2 -+ j), pr‘ :- e atr1Fl (knr : 2 -t_ E) (3.5) 

hk* = Rej* (!?xr I2 -j- E), pk* =- Im f* (knr / 2 t- E) 

Denoting 
3Rof” (nt / 2 -+- 5~ / 2) = pi* 

from conditions (2.2) and (2.3) we obtain 

dh,* I dE = YP,( exp ( Ic;,*) sin (Th. -+- pk*) x 

G.6) 

(2.7) 
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[I + 37 exp (k.h*) 5 pir sin (Tk + pk*) cEE]-l (k = 0.1) 
5 

h, (j) and _r,i (E) be real functions continuous along segment [O, x / 21. 
We introduce operator K 

It can be readily ascertained that function 

f (5) = K (ho, h,) 

is regular in D, continuous in a and satisfies conditions 

Imf (iq) = Imf (n / 2 + iv) = 0 (0 < q < n ITI / 2) 

-$Ref(F+E) =h6(Q (k=O, 1; O<j<+) 

Ref(n//) = 0 

Introducing notation 

hk = Ref (km I 2 + E), pi, = Imf (h-c+ / 2 + E) (2.11) 

hi = dhk / dE (k = 0, I), ps = 3 Re f (nz / 2 + n / 2) 

D, (JL) = -$ j hct) tdt 

0 

from (2.8) and (2.9) we obtain relationships 

~0 = Do ()a’) - D, (h’), p1 = D, @o’) - Do @I’) 

p2 = Dz (A,‘) - D, (A,‘) 

(2.12) 

Let d be a real number. We introduce operators PO and PI 

PI, (h, d) - r,o, exp (kd) siu (T, + h) x 

Allowing for (2.7) for the determination of functions po*, pi* , and constant /-la* 

from (2.12) we obtain the following system of operator equations: 

~0 = Do (Po (~0, ~2)) - Di (Pi (~1, r-12)) (2.13) 

~1 = D, (Po (~“03 ~4) - Do (Pi (~1, ~2)) 
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P2 = 02 (6 (l-b P2>> - D2 (PO @lY PLP)) 

Let C be the space of functions continuous in the interval [O, n / 2J and E the space 
of real numbers. Introducing the Banach space 

B = c x c x E = {v = (&, f-Q, P*): PI), PEG p2 E Jq 

with norm 

I/y II B = II Poll c + II Pl II c + II P2 lb 
and operator A defined over B by the equalities 

A (v) = n, (V) x A, (v) x nz (v) 

A0 @> = Do RI (PO? Cl?)) - 0, P, t~~~P~)) 

-4, w = & RI (PO, F2)) - aI (PI (PI> Pd 

Az (9 = Dz v% (PII PJ) - a (cl (PO, c(2)> 

we represent system (2.13) in the form of the operator equation 

v = A (v) 

(2.14) 

(2.15) 

3. Let us investigate the properties of the introduced operators. 
Lemma. Operators D, and D, transform space C into itself. 
Let h (5) E C and ~~ (E) = D ,, (h (5)). Let us consider the remainder ‘co (k) - 

7. (g’), Using the expansion of function 8, (5) into an infinite product (see D] p. 344), 

the equalities [8] 

111(! _ q2n&E) = _ i $ q2nkezikE (q = $7’) 
k=l 

t sin 2kE sin 2kt 
k-1 

the Cauchy-Buniakowski inequality, and the Parceval equality, we obtain 

1 zo(~)- z. (t’)I <~llhIje { i f$ &q4nk1 sit1 2kE - sin2kE 12)," (3.1) 

n=Ok=l 

Since the series in the right-hand side of expression (3. I) is uniformly convergent and 

for k + g’ tends to zero, hence z. (5) E C. The validity of this lemma with respect 

to operator D, is proved in a similar manner. The norms of operators D, and D, are 

determined as in [l, 91 by 

(Zk - 1) (2/c - I)!! 

where G is the Catalan constant. Derivation of the norm of operator D, is elementary 

liD,Ijs = 3~ / 4 (3.3) 

According to (1.1) and (1.6) pk and 71k E C (k = 0, 1) (note that when the free 
surfaces contain infinitely distant points, the form of function dW / dL is different from 
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If p,,and pi E C, and ~1~ CZ 10, Fz]~ then for 

r < W-ie-‘“, 0 = 3n ?_a& II PAII c (3.4) 
-9 

the relationships 
P&z bk, f&j f? c (k = o,i) (3.5) 

iiPk Q-h p2) IIC < vw’~ (1 - ywer’)‘l (3Jp 

II A2 (v> J/E < ‘jp yoe’* (1 - +fc~e’~)-~ 
are valid. For 

Y i 2r, [w (1 + 2r2)er~l-1 (3.6) 

condition (3.4) is satisfied, and (3.5) yields the estimate [Ia, {Y) 11~ < ra. This, with 
the lemma taken into acconnt,implies that operator A transforms the closed set B, = 

C x C x IO, rJ (Bz c B) into itself. 
Let v’ = Q-h’, f-h’, pz’) E &, v” = (po”, p<, p{) E Bz, and ‘l’ satisfies con- 

dition (3.4). Then, after some transformations, for k = 0,l we obtain 

IlPk (Pi;lr cl%‘) - Pk (PC, p2")llc < we" Ik IIpcz' - j-b"ll~ + (3.7) 
(1 -t- 2yoer9 II& - t+JjCl (1 - 7”e”)-a (3n)-1 

Allowing for (3.2), (3.3) and (3.7), from (2.14) we obtain 

Ii-4 (v’) - A (y”) IIB = II A, (v’) - A, (v”) I/c + &4, (Y’) - 
4 W) IIC t ItA% (q - A, (v”) IIE < a jl v’ - VW IjB 

a = tc (r) = ywer* (1 + 27oe’3 (1 - ywe’;)-2 b-1 

b = 3%r (3x / 4 + d, + d,)-1 

It can be readily shown that a ( 1, when 

r < @Oc-r~, B = (2b + 1 - p? 47 12b) (2b - 4)-l 

Since p ( 1, hence for 

(3.8) 

the inequalities (3.4), (3.6 ] and (3.8) are simultaneously satisfied, and operator A 

satisfies the conditions of applicability of the method of contractive mappings. 

The curve 7 = cp (rz) (0 < r2 < 00) shown in Fig. 3 passes through the coordinate 
origin and asymptotically tends to the axis of abscissas when r2 - 00. For r, = llo 

function cp (r2) reaches its single maxim& 

0 Fi’ 0.5 rz” rz 
We use the method of contractive mappings 

for formulating the following theorem, 

Fig. 3 Theorem 1. Solution y* s (pO*, pi*, 
p2*) of Eq.(2.15) exists in space Bz’ = c x 

C X 10, r2’1 when r < yl < y. . In space Bg” = C x C x IO, r2”l (B,’ C B20) 



this solution is unique, It can be found by the method of successive approximations with 

the use of the following scheme 

y(n) = A fy’“-1’) fn = 1, Z,(..) (3.9) 

and any initial ap~ro~rnat~on vf@ E Bs’. Estimate of the ath order a~~o~mation 

error is given by formula 

4, If v* = (pO*, pr*, pa*) is a solution of Eq. (t&15), which belongs to space B, 
rhen it can be readily shown that function 

f” (S) = K (Pa (Et*“, pz”ft PI (PI*:, Eta”)) (4*1) 

is a solution of the boundary value problem (2.2) - (2.4). The CO~VSXS~ statement that, 
if function f* (5) solves the boundary value problem (2.2) - (2.4) and IJO*, f.t~* and 

ps* are determined by equalities (2.5) and (2,6), then v* = (pa”, j,kl*, ps*) is a 
solution of Eq. (2.15) and v* E B is also valid. Hence the boundary value problem 

(2,2) - (2.4) has no solutions different from those derived by solving Eq. (2.15) by for- 

mula (4.1). 

From this with allowance for (3.9) and (2,14) we obtain 

Im f@Q (knz i 2 + 6) = y jr”” flc = ill,%) 
3Re f”’ @XT / 2 f n i 2) = @ 

It is nor difficult to verify that 

rn~xg~~lIf*(5)-f(rL)(~)Is 

max k F: 0, 1 (11 hk* - ?$‘J/c -I- jj pk* - $2 j/r”) 

where Jr = 0,1 and 

I&k* - %? i/C < + I &?” (4.5) 

Using formulas (2. 7), (4.3), (3.2),(3.3) and (3.7). from (4.4f and (4-5) for vo E fi,i 
and ?’ < ‘j’r < y0 we obtain 

max 5 E B 1 f* (5) - fen) ({) I< a, jj v* - P-l) 11~3 
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which with allowance for (3.10) yields 

$0) - A (%q j/B (4.6) 

Let us denote by lcrl (r2) that class of functions f (5) which are analytic in D, con- 

tinuous in a ,.nd such that 

3Ref (T+$)<.T~, -&Ret (y-I_+ (k=O,i) 

On the basis of these results we can formulate the following fundamental theorem . 
Theorem 2. Solution of the boundary value problem (2.2) - (2.4) for ‘i’ < r1 ( 

r0 exists in the class M (r2’), and in the class M (rs*) it is unique. The solution can 

be derived by the method of successive approximations with the use of formulas (4.2) 

and (3.9) for any v(O) E Ba’. Estimate of the nth approximation error is given by for- 

mula (4.6). 
With f* (5) known, any geometric and kinematic properties of the flow can be de- 

termined by formulas (1.1). (1.2), (1.4) and (1.6). The Bernoulli equation provides its 
dynamic properties. 
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